Agora-An Experiment in
Multimedia Message

Systems

Najah Naffah and Ahmed Karmouch, Bull Transac

The Agora multimedia
message system was
designed as part of
the Kayak project,
employing a multisite
architecture for the
distributed, integrated
electronic office.

e consider a distributed message
W system that allows exchange of
compound documents among

workstations to be the foundation of in-
tegrated office systems in the future.
Although not widely used in corporations
today, experiments like the one we de-
scribe here have shown the feasibility of
these concepts. In particular, they have
highlighted some essentials for a technical-
ly successful electronic office system:

® multimedia workstations with good

interface features,

* reliable message transfer,

¢ a flexible naming scheme, and

® a multisite, distributed architecture.

We here describe the Agora project,
conducted within the context of a larger
project called Kayak,! and its architec-
ture. Agora’s functional model was de-
fined in parallel with the IFIP model.?2
Kayak’s goal was to build a complete, inte-
grated electronic office.

The Kayak project

When the decision was made in France
in 1979 to launch a pilot project of office
systems, word processors had just begun
to penetrate the office automation mar-

0018-9162/86/0500-0056301.00 © 1986 IEEE

ket. On the other hand, there were few
electronic-mail systems except in univer-
sities, research laboratories, and a few
private companies. Arpanet mail,3 built
into the host systems connected to Arpa-
net, serves as a good example of a research
mail system. Local networks were in the
embryonic stage. Only Xerox PARChad a
prototype of bitmapped workstations
connected through the Ethernet local net-
work to mail, file, and printing servers. 4
In the pilot project, called Kayak,! we
wanted to explore in depth the concept of
an integrated office system.

We investigated office integration at
different levels: workstation, network,
and application. The workstation goal was
to build a personal machine supporting the
functions necessary to acquire and present
theﬂu‘gds of media used by office workers
in their daily tasks—voice, plus written
documents containing manuscript, typed
text, drawings, pictures, and graphics. A
friendly interface criteria led to a voice
command and signalling system, a large
bitmap screen, a pointing device, and a
standard keyboard.

The workstation, called Buroviseur, 5
was assembled from the components
shown in Figure 1. It has a multiboard ar-
chitecture based on the Intel Multibus. All
boards have the standard Intel SBC for-

COMPUTER

mat. Some boards, like the CPU (8086),
memory (512K bytes), and disk controller,
have been adopted off-the-shelf. Others,
like the bitmap-mouse-keyboard driver, a
hundred-word voice recognition system,
text-to-speech synthesis, and voice codec
boards, were designed internally.

The software running in the worksta-
tions of Kayak contains the necessary
drivers for all these devices, plus a set of
application programs for document man-
agement. Two important packages in the
message application are the multiwindow
package, called Vitrail,® and the com-
pound-document editor/formatter, called
Plume.’

Vitrail is a standard windowing package
with a high-level interface to the applica-
tion program developers, who interact
with devices by manipulating primitives
such as open window, display object,
create menu, read input, and the like. The
multiwindow package is built on top of a
toolkit that deals with

(1) display of all objects, including mul-
tifont characters, graphical objects, and
facsimile boxes;

(2) object manipulation, such as copy,
move, reduce, and zoom; and

(3) the conversion of data, such as text-
to-speech and word recognition.

The editor, Plume, is a WYSIWYG
(what you see is what you get) editor that
deals with structured documents contain-
ing entities of different levels, including
chapters, sections, paragraphs, characters
of various fonts, and alphabets.

Vitrail has enormously facilitated the
implementation of the user agent (ex-
ploitation features) in the Buroviseur. On
the other hand, Plume has served as the
basis of interaction in Agora, the multi-
media message system.

A local network based on the CSMA-
CD access scheme interconnects worksta-
tions. A 1M-byte-per-second baseband
local-area network, or LAN, called Dan-
ube, it can cover two kilometers and
connect 255 nodes. Different Danube net-
works were connected with X.25 gate-
ways. 8 This architecture is the infrastruc-
ture upon which the distributed message
system was installed with distributed name
servers and messaging servers. In a typical
site, IM-byte-per-second provides enough
bandwidth to exchange multimedia mes-
sages among workstations. Real-time
voice messages are exchanged through a

May 1986

SCREEN:

bitmap 1024*768
(speaker behind
the screen)

Three-button
MOUSE

telephone

(free-hand
or

handset)

6 Mhz
Intel 8086 G

processor

8" Floppy _/@

Disk 256 Kb

8" Winchester
Disk 10 Mb

vw,
N NHS
R
SRR
QR
A
R
S
',
SN
AN J
IR
SARARILILSN

%
Q
&

AN

7,
&
7,
>
7,
7,
™
7,
&
7,
&
7,
o~
22

ORI
SOHIIS
R
RN
R
SO
L
OO
R
%
BRI
X
SRR
R
20
NN

S
S
AN

,
Y

\I /)
* (2 (2
QLR

S

R

5

.\.,\..,..
R
QL
.
R/
&5
Y

‘.\,
O
R
YN
X2
Y

Figure 1. Buroviseur
components.

telephone network driven by specific ports
in the Buroviseur. No voice packets for
real-time dialogue were adopted or mixed
with non-real-time traffic. This decision
was made because the potentially heavy
load generated by real-time traffic would
create instability in the CSMA-CD-based
Danube network. However, pseudo-real-
time information exchange among users
takes place by means of workstations
equipped with speech synthesizers. Text
entered on one workstation can im-
mediately be sent to another workstation
and converted to voice.

Danube provides communication sup-
port corresponding to the first five layers
of the ISO model for open systems inter-
connection. The NBS protocol® has been
used above the session layer to exchange
messages, while an SGML-like coding !?
has been adopted for the document
structure.

Integration at the application level is as
important for the user as the integration at
the workstation level or the network level.

It implies coexistence and information ex-
change among various applications. On a
practical level, the user can switch between
applications without stopping one to run
another. He can also ask to take one docu-
ment or piece of a docuntent from one ap-
plication and use it in another. In our im-
plementation, this process was facilitated
by the adoption of the same document
representation standard and common ses-
sion services in the workstations and
Servers.

The Agora architecture

The Agora system is designed according
to a distributed and open architecture.
From the conceptual point of view, Agora
is based on a functional model similar to
the IFIP model? and consists of different
entities that work together to provide com-
munication services.

57

name server

message server

user agent

user agent

Figure 2. Agora
architectural
model.

message transfer service

Architectural model. A schematic
description of the architecture appears in
Figure 2. The components are as follows.

Message transfer system. The MTS con-
sists of several message processors called
message processing ends, or MPEs, that
provide the functions needed to route
messages from the originator user agent,
or UA, to the recipient UA. The MPEs to
which the originator and recipient UAs are
attached are called originator and recip-
ient MPEs, respectively. During the
routing of a message, MPEs other than
these two may be involved. If so, they are
called intermediate MPEs.

User agent. The UA, a set of application
processes, provides several functions:
functions necessary to interact with the
MTS and retrieve messages, and functions
necessary to interact with the user to
prepare and present outgoing and incom-
ing messages.

Name server. The NS, a distributed
database of names, manages the Agora
users (humans, processes, and roles). The
functions provided are mainly those
necessary for manipulating names (creat-
ing, changing, and removing names) and
names-to-address mapping. The NS can
be reached from an entity called the client,
a program that offers a set of primitives
that allow its users to obtain all the func-
tions provided by the name server. The
client may be located in both UAs and the
MTS.

Protocols. The interactions between the
entities that appear in the architecture are
managed and ruled by appropriate proto-
cols. They are identified as submission and

58

retrieval protocols for the interactions be-
tween UAs and the MTS, as intermediate
or relay protocol for the interaction be-
tween two MPEs, and as the client name
server protocol for the interaction between
the client and the name server to which it is
attached. Interactions between name
servers are managed by intername servers
protocol.

The similarity between the Agora ar-
chitectural model and the CCITT model
for message handling facilities!! is
natural. Both systems were based on the
IFIP model. However, the implementa-
tion of Agora started before the CCITT
model was defined.

Physical mapping. The Agora model is
implemented with the following com-
ponents:

® the access point, built in the Burovi-
seur, which offers the user agent
facilities;

® the message server, which contains
one MPE and a set of mailboxes; and

¢ the name server, which manages par-
titions of the subscribers’ names.

The definition and role of these com-
ponents can be explained by a description
of operations executed from the time
when a user has a message to communicate
to the time when his message is perceived
by another user. The two types of users are
the originator, or the information creator,
and the recipient, or the destination of the
information.

The originator prepares his message
with the Plume editor acting as the UA
located in the Buroviseur. The UA pro-
duces a standard message for further
transmission. The message is structured
into various fields with equivalents to the

envelope and content of standard mail.
The former contains information neces-
sary for routing the message. The latter
contains information that the originator
wants to communicate to the recipient. It
contains a header and the body. The body
may consist of different parts, each with
various types of information (graphics,
text, voice, and image).

The UA submits the message to the orig-
inator MPE. The MPE undertakes the
analysis of all the envelope elements and
may refuse the submitted message. During
the envelope checking, the originator
MPE may send queries to other compo-
nents of the system (the name server) to
obtain more information about the origi-
nator rights. Once an MPE has accepted
the message for forwarding to the destina-
tion MPE, it starts a new phase of localiza-
tion of the resources containing the
mailbox.

To perform this function, the MPE asks
the name server to provide the mapping
between the recipient’s name and the cor-
responding mailbox address. After the
localization phase, the MPE establishes a
route (according to its internal table) to the
MPE that handles access to the mailboxes
in the mail server.

In establishing the route, other MPEs
may be involved. They act as intermediate
MPEs. Private and public transmission
media may be used to connect two MPEs
on both ends. Once a route is established,
the transfer of the message is performed
and stored in the recipient mailbox located
in the message server managed by the re-
cipient MPE. The recipient can retrieve
messages from his mailbox through his
UA.

Name server

The name server represents the entity
responsible for the management and ad-
ministration of names. The management
functions deal more specifically with
names and addresses such as mapping,
lookup, or list members of a distribution
list, while the administration functions
deal with attributes of mailboxes (such as
right to write and delegate access) and the
updating algorithm when a name or an ad-
dress is to be created, changed, or re-
moved.

Structure of names. Names are struc-
tured in a hierarchical manner. The

COMPUTER

method used consists of breaking down
the name domain into groups, each man-
aging its own space of internal names.

A group is an attribute that can take dif-
ferent and unique values. Each value may
represent an authority or an administra-
tion to which all local users are connected.
An internal name is an attribute that may
have different and unique values. Each of
these values represents a user name be-
longing to a given group to which it is at-
tached. Thus, the name of an Agora user
takes the form

<user name> = < group name>
< internal name >

The relation that exists between these two
attributes is a hierarchical relation. The
main advantages of this representation are
reduction of ambiguity in names, and flex-
ibility and adaptability for decentralized
schemes and the naming authority. This
naming scheme is satisfactory within an
organization, but it should be extended to
cover more attributes in an international
environment.

Types of names. The name server in
Agora defines and manages different
types of names, including

® individual, an ordinary subscriber
known to the system by his or her in-
dividual name (In addition to the mailbox
address associated with the name, a pass-
word and a mailbox access key are also at-
tached to the name for protection of the
mailbox and control of information.);

e alias, considered another name of the
individual to whom it is linked;

e distribution list, a list of predefined
subscriber names (members of the list);
and

e teleconference list, with a definition
similar to that for the distribution list, but
with a wider range of facilities. A telecon-
ferencing list has an organizer, who is the
creator of the list. A teleconference may te
public or private. A public teleconference
may be joined by any subscriber at any
time. A private teleconference is restricted
to subscribers authorized to join by the
organizer.

Management of names. To keep infor-
mation about group names continuously
available, the database of group names is
replicated in each name server. For the
same reason, partitions of names may also

May 1986

be replicated. Hence, all the name servers
have the same copy of names on different
sites.

Because of the nature of message system
applications, in which delays are counted
in terms of minutes, hours, and even days,
we can tolerate temporary inconsistencies
that may occur during conflicting update
operations of the name database without
any damage. Accordingly, in Agora an
optimistic updating algorithm is used
based on a time-stamping mechanism
summarized as follows:

The most critical update operations are
create-name and delete-name queries.
They can be initiated by any administrator
from any site by interrogating the local
name server. When a create-name query is
received by a given name server from an
administrator, a time stamp is attached (at
the name server level) to the query, which
is processed locally to see if the new name
to create is already registered.

If this is the case, the create-name query
is rejected. If not, the name is added with
its time stamp to the name server and the
update operation is broadcast to all other
name servers.

Upon receipt of the update operation,
each of the other name servers performs
the query as follows: If the name to create
does not exist in that name server, the
name is added to it with its time stamp.
Otherwise, the time stamps are compared.
The name that has the most recent time
stamp is ignored and the other name is
kept in the name server with its time
stamp.

For the delete-name query, the process
differs. It is performed locally by the initi-
ator name server, which compares the
query time stamp and the time stamp of
the already-registered name that must be
deleted. The name is deleted if the query
time stamp is more recent than the one
associated with the registered name.
Otherwise, the query is ignored. When the
delete-name query is performed locally by
the initiating name server, it is broadcast
to all other name servers, which process
the query in the same way as in the initiat-
ing name server.

The delete-name operation is per-
formed in two steps:

(1) The name is marked “‘name in dele-
tion progress’” and must not be recreated
until it is removed from the name server.

We believe that a
simple optimistic
algorithm takes
less time than
other algorithms
and provides a
satisfactory
solution here.

(2) The name is removed from the data-
base of valid names.

This second step can be performed after
time, even in the order of weeks, because
we want to ensure that the name is deleted
from all name servers before it is re-
created. ’

Notice that each initiating name server
performs an update operation before
broadcasting it to all other name servers.
Theoretically, the update operations
should be received by the other name serv-
ers in the same time ordering as they were
sent. However, this cannot be guaranteed
because of the transmission delays and the
computers’ variable load. The result: in-
consistency may occur for a period of
time. Furthermore, the time-stamp
mechanism used here does not guarantee
that the administrator who initiated the
update operation will win, because of the
desynchronization of clocks between dif-
ferent name servers.

However, from our experience we be-
lieve that a simple optimistic algorithm,
like the one we implemented, takes less
time than other algorithms and provides a
satisfactory solution in the context of a
decentralized name server dedicated to a
store-and-forward message communica-
tion system.

Message server

The message server is the tool that
allows the user to receive messages from
other subscribers and to retrieve messages
from his mailbox. We might say that a
message server is a collection of mail-
boxes.

We must emphasize that grouping of
mailboxes in a message server does not

59

Print Server

| &
Seanner
NS name server

UA user agent
MS message server

: DPS8
buriaz;seu"s mainframe
UAs micro =
& & server [Ng__[MS

& & e 8058 LE
@(@% EF / Denube
éﬁﬁ?\(oy LAN
TELEX

X25 4 2
=

TELEX NET

telex terminals

PDN
s

TTY terminals

Figure 3. Agora implementation configuration.

reflect the naming strategy adopted in a
name server. Within a message server,
subscribers can belong to different
groups. Likewise, all subscribers belong-
ing to a given group can have their mail-
boxes in different message servers. The
distribution depends on economic con-
siderations, as well as professional criteria
allowing a subscriber to have his mailbox
(a primary mailbox if there is more than
one) as close as possible to his current ac-
cess point.

Server implementation. The first im-
plementation of the message servers and
name servers in Agora occurred in the
mainframe Honeywell-Bull DPSS8, located
at INRIA- Rocquencourt (see Figure 3).
The operating system was Multics. Three
modules were installed: the name server,
the message server, and a UA activated
when access takes place with TTY ter-
minals through Transpac (the national
packet switched network in France). Dan-
ube was connected to Transpac through a
special X.25 gateway. All Buroviseurs
connected to Danube have their own UAs
that can talk directly to the name and
message servers in the mainframe without
going through the TTY UA.

60

To manage storage and retrieval of
messages, we used the Multics relational
data store (MRDS), a relational database
management system (DBMS). However, a
DBMS does not suit large volumes of data,
such as those contained in the bodies of
messages. Hence, we restricted the use of
MRDS to the fields of the header. The

message body was managed by FMS, the
Multics file management system.

MRDS itself remained hidden from
users and served only as an implementa-
tion tool. User commands were mapped
into MRDS queries by a special program.

Use of MRDS as an implementation
tool benefited programming productivity.
However, it is not mandatory to use a rela-
tional DBMS in a CBMS to enhance the
quality of service. In fact, it increases the
volume of code resident at run time and
necessitates a large memory. For this
reason, we decided to build another ver-
sion of the name and message servers on
top of a simple access method that uses
FMS.

The implementation described was
ported to an 8086-based microserver with
70M bytes of disk space. The volume of
code in the mainframe measures approx-
imately 22,000 lines of PL1.

The user agent

As in other mail systems, we faced the
problem of terminals with different
degrees of intelligence—teletype-like ter-
minals, sophisticated workstations such as
the Buroviseur, and telex terminals. The
challenge: to provide a consistent interface
for the various users independently of the
type of terminal.

The user agent architecture consists of
three modules: the dialog manager, the
message editor, and the protocol handler.

JON ~ CURRENT TCF =
WRITE FORM EDITOR
WRITE-MESSACE EDITOR
TELECONFERENGNG. HOOF Y EDrToR
st FLE-NAME
DELETE [#1
RENAME
INTERVENTION
QUESTION
e NOTE
VOTING FORM
RESPONSE VOTE

Figure 4. The teleconference tree.

COMPUTER

THE MAIN MENU

GROUP NAME :

SUBSCRIBER NAME :

/a acquiring a scanned image

/ real time messaging
/ initiation of voice
__——> slides preparation

——> multimedia editor

\ presentation graphics

AUTHOR : PASSWORD :

SUBJECT :

DOCUMENT :

EXTERNAL REFERENCE :
RESPONSE TO :
FORWARD TO

2o lall|F |2

2] 2 -FROM: rva zim TO: KAYRK ZIM DATE : 21/05/85 SUBJECT :

Prem e

THIS EDITOR PROVIDES THE FACILITIES
T0 CREATE AND MANIPULATE OBJECTS
OF ANY TYPE (text , graphics , pictures

Figure 5. Command selected in multiwindow environment.

Dialog manager. Agora provides the
user with the services of administration,
teleconferencing, and mail. The functions
included in these services are represented
as a tree, which also gives the structure of
the command language.

The administration tree has five
branches representing five sets of com-
mands: group, subscriber, alias, distribu-
tion list, and conference. In the group set,
the user can list all groups managed by
Agora, or search for a specific group. The
subscriber set includes functions to pre-
sent and modify the user’s various param-
eters. The alias set allows for manipulation
of additional names assigned to the user.
The distribution list allows the user to
create or delete distribution lists, or to
manipulate a specific list. The conference
set deals with the creation and manipula-
tion of teleconferences and their
parameters.

The mail tree contains the traditional
commands of creating, filing, retrieving,
and redistributing messages.

The teleconference tree allows the user
to enter and participate in a teleconference
by sending different types of messages (in-

May 1986

voice comments...)

tervention, question, note, vote, and so
forth) and retrieving or archiving informa-
tion exchanged during a teleconference.
Figure 4 illustrates the teleconference tree.

The syntax of every command follows
exactly the tree structure. The materializa-
tion of the tree varies according to the
available resources and intelligence of the
terminal. For the Buroviseur, where a
multiwindow package exists, dialog takes
place through selection of commands dis-
played in a hierarchy of menus that exactly
reflects the tree structure. Parameters are
entered directly into predefined forms
displayed on the screen (see Figure 5).

In the case of teletype, a query-response
dialog replaces this interface. All queries
and answers are displayed or entered in
line mode.

Obviously, the first type of dialog is
more practical because of the direct selec-
tion of commands with the mouse, the im-
mediate feedback, and the simultaneous
views on the screen of the steps of the in-
teraction.

Although the difference between physi-
cal representation of both interfaces is im-
portant, we have succeeded in providing

Figure 6. The main menu.

the same logical interface, and thus the
same service, to both categories of users.

The multimedia editor. The multimedia
editor used to prepare compound docu-
ments on the Buroviseur is fully interactive
(what you see is what you get). Is is based
on a system of menus and icons inside the
menus representing the commands or the
objects. At initiation time the system
presents a main menu (see Figure 6) con-
taining commands that can be invoked
directly. Those that deal with messaging
and editing are indicated with arrows in
Figure 6.

When using the picture acquisition
icon, the user can place a new picture
under the scanning device and order digi-
tizing of the image. The image can then be
sorted on the disk attached to the scanning
device and transmitted to the workstation,
where it is automatically displayed. Before
deciding to the store the picture, the user
can clean it up with the editor and store all
or parts of it.

When using the real-time messaging
icon, a window opens at the workstation.
The user can enter the destination name

61

ou début | poge suiv
ala fin | poge prec
poge N | recherche

e o Pl
closser | terminer | hord copy

presentation

titre niv. 1 | titre niv. 2 3
titre niv. 3 | titre niv. 4 graphlcs
pg stondard | pg manuel mode

image mode
(slides)

voice mode

MULTIMEDIA EDITOR MENU

Figure 7. Multimedia editor menu.

62

Menu architecture.

MENU ARCHITECTURE

B B &
Rﬁgﬁﬁ
MENUS OF W
SLIDES EDITOR oo

X
o
R

/ N\

+ <4

A

® b

Figure 8.

2 TYPICAL SUB-MENUS

(individual or group name) and the text of
the message, transmitted directly over the
local network to the destination. If the
recipients of the message have initiated
voice output (possible only at worksta-
tions equipped with the voice synthesis
feature), the arriving message is translated
directly into spoken words. This service,
also called Interphone, benefits a group
work environment. Recipients can be so-
licited for a meeting or to execute a specific
task. The speaker icon allows the user to
authorize or forbid speech synthesis.

The slide preparation and presentation
graphics editors provide tools for produc-
ing information materials one page at a
time. Although they can be invoked and
executed independently, the modules are
also embedded in the multimedia editor.
When activated, this editor displays the
menu shown in Figure 7. The menu con-
tains commands for creating text blocks
and for joining, manipulating, and brows-
ing these blocks. Figure 7 highlights three
particular types of command: image,
voice, and presentation graphics. Blocks
containing images can be retrieved from
the filing system or digitized. The image
can be placed anywhere.

The image editor is probably one of the
most powerful tools we have. The menu
shown in Figure 8 illustrates the rich set of
functions provided. All geometric trans-
formations can be applied to various ob-
jects. Each transformation has its own
submenu. In Figure 8 we see two typical
submenus, one indicating the different
modes of scaling and the other, the library
of textures available. Any object can be
slanted and combined with other objects,
which simplifies adding captions to pic-
tures or creating images such as that
shown in the middle of Figure 9.

Since it is difficult to show how voice is
created, we describe in written form the
whole process. In voice mode, an open
window accepts two types of data: written
text to be synthesized, or digitized voice at
64K-bits per second. The voice annotation
can be modified only when in the text
mode. Once created, it is stored in an at-
tached address. In this respect, it is pro-
cessed in the same way as a footnote.
When presented on a screen, the voice is
pronounced only if the voice output is ac-
tivated (as explained before). In the cur-
rent block, a special marker indicates
vocal annotation. The user can ask for
display of the property sheet of any object

COMPUTER

including a voice marker and, in this case,
hear the attached comment.

Protocols and message
structuring

The interaction among Agora com-
ponents is through appropriate protocols
located at the application layer in the ISO
reference model. The interaction between
two components (entities) is based on the
client-server dialog mode. The server per-
forms the service and reports the result to
the client. The dialog between client and
server takes place in an interactive mode.
Each service is represented by an opera-
tion code and arguments that are the pa-
rameters necessary to perform the opera-
tion. Protocol elements are transferred by
a message transfer protocol, or MTP. The
MTP uses session services to create and
maintain a logical session between entities.

Data transfer is performed on a one-
way alternate mode on a logical session.
The data encoding scheme derives from
the NBS proposa] for message format syn-
tax encoding, ® while the message content
is structured according to SGML. 10

The NBS protocol. The NBS standard is
based on the fields model? that defines the
message as a series of fields—more ap-
propriate than the header and text model.
Thirty-nine fields have been proposed and
divided into three categories: Required,
Basic, and Optional. The required fields
must be present in all messages and must
be processed by all CBMSs.

In Agora we adopted the three fields
From, Posted-date, and To. The Basic
message fields need not be present in all
‘messages, but must be processed by receijv-
ing CBMSs. Four basic fields have been
implemented in Agora: Cc, Reply-to, Sub-
ject, and Text. The last category, Op+
tional, contains fields that need not be
present in all messages and may be ignored
by receiving CBMSs.

We implemented 22 fields: Attach-
ments, Author, Bce, Circulate-next,
Circulate-to, Comments, Date, End-date,
In-reply-to, Keywords, Message-class,
Message-id, Obsoletes, Originator-serial
number, Precedence, Received-date,
Received-from, References, Reissued-
type, Sender, Start-date, Warning-date.
The syntax in the NBS format is machine-

May 1986

Quelques chiffres sur la saisie et le traitement d'imeges

Introduction

Pour introduire une image am existante dans un systéme
de g n documents, on se doit

aprés

. n'importe quelle position.
ponrrnit &re faite A laide des outik

e manipulation
d-ponibl- im Yéditeur.

Au niveau de la saisis tous Jes analyseurs travaillent & priori de la méme manidre,

selon le schéma suivant :

Lecture Controles

2P

Stockage
[compression]

uw«-.ﬂmmamuumphu pour environ 2288

une ligne, I'analyse

bien sur, que le racordement A I'analyseur soit trés intime.

possdéde un mécenisme de compression des images, il l'utilise
tﬁpclmlhwl‘e.lmvlu-mmdosn/n Ce temps est

§i le scenner

donc négligable par rapport A la saisis et la

Au niveau du serveur, Jo stockage sur disque commence avec un léger retard par
s'effectue en parallidle, & 5 Mb/s. Lo retard s'évalue

rapport & la transmission, mais
& 1 seconde.

Pour une image format A4, I'analyse avec compression 4 la volée et le stockage

sur le disque du serveur peut se comme suit :
- 6 secondes de saisis et de transmission
-1 de suppMmentaire de stockage disque.

ystéme gri

d’¢tre stockée dans cette
alors le réle de serveur
quelle station peut
rapatriement de

cette
sur la

Figure 9. Example of
a multimedia page.

readable, which makes it flexible, especial-
ly when nontextual data is to be presented.

The message is structured in two sets of
data elements: Basic (ASCII-string, Date,
End-of-constructor, Field, and Message)
and optional data elements (14 types). We
mention in particular Bit-string, Com-
pressed, Property-list, Extension, and
Vendor-defined because of their use in
Agora. The envelope was implemented as
a Vendor-defined data element. Other
types, such as Extension or Property-list,
could be considered for encoding voice
and fax. Naffah and Mazoyer argued
these options. 12 However, we adopted the
SGML language for the message content
structure because it better suits the nature
of complex documents transported by the
message systems.

The NBS processor takes approximate-
ly 2000 lines of Pascal.

Message content architecture. The con-
tent of the message is usually called Docu-
ment. Within this message field all of the
semantics of the message should be em-
bedded. When we examined the office en-

vironment and analyzed the documents
exchanged, we found it mandatory to pro-
vide (in CBMS) a rich document architec-
ture and thus a sophisticated document
representation for the following reasons:

e Multimedia environment: Office
documents may include text with a variety
of languages and alphabets, geometric
graphics, facsimile pictures, mathematics,
chemistry, professional symbols, voice, or
a combination of these data types.

® Processing environment: Some of the
documents will be stored in databases,
which necessitates their storage in revis-
able form. Other documents may be sent
to formattmg or printing systems.
Therefore, they are sent with physical
layout parameters, or in final form.

¢ Logical environment: Documents
may vary from a simple note or memotoa
book of many volumes. Those logical enti-
ties are built according to a tree structure
of elements, which may have complex log-
ical links in addition to the tree-like rela-
tionship. Documents can also be linked
together.

63

In Agora we
adopted the SGML
representation to
encode the content
of messages
exchanged between
UAs and message
servers.

For these reasons, document architec-
ture should be chosen with great care. The
first proposals for multimedia protocols
came from the Arpanet community. 13:14
Recently, international standards groups
such as CCITT and ISO started working
on document standardization and transfer
protocols. At the CCITT, T73 is propos-
ing a structure for mixed-mode teletex ser-
vice. ECMA and ISO proposed ODA-
QODIF (office document architecture and
office documentation interchange for-
mat). In addition, ISO is considering the
SGML (Standard Generalized Markup
Language), also elaborated upon by an ex-
pert group called CLPT (Command Lan-
guage for Processing of Text). Xerox has
proposed Interscript. !5 The current posi-
tion of the standards groups is to combine
the two families. 16

In Agora we adopted the SGML repre-
sentation to encode the content of mes-
sages exchanged between user agents and
message servers. During the editing pro-
cess, all documents are automatically ex-
ternalized in SGML format and sent in the
Text field of the NBS format to a remote
message processing end. Documents re-
trieved from mailboxes are internalized by
UAs for editing or display on the screen.

Inferconnection with
public message
services

The Telex case. The Telex network con-
stitutes the largest text-exchange service in
the world, with millions of telex worksta-
tions in different countries. Actually, it is
the simplest form of electronic message

64

sending, distinguished from the present
CBMS by the lack of a store-and-forward
service. To enhance this service, the
CCITT has adopted the Teletex service, in
which simple telex terminals are replaced
by sophisticated Teletex terminals having
editing and storage capabilities.

Whether telex today or Teletex tomor-
row, it is essential that any CBMS aimed at
a large community of users provide special
ports to this ‘‘telematic’’ terminal. There-
fore, we decided to include the telex inter-
face in the Agora project and provide the
interconnection of CBMS and telex ser-
vices in both directions. The major
challenge in accomplishing this is solving
the problems of coexistence between two
services with different levels of func-
tionality at the terminal level.

A telex agent built in special hardware is
connected on one side to the telex net-
work, where it is known by a unique inter-
national telex number. On the other side it
is connected to the Danube network,
where it has a mailbox in the message
server. The agent periodically polls its own
mailbox to check the content. Whenever it
finds a message, it takes it out and sends it
through the telex network. When the
agent receives a message from a distant
telex terminal, it acts as an MPE and sub-
mits the message to the appropriate mail-
box in the message server.

A naming convention has been
adopted: The telex subscribers are
registered under one group, called Telex,
with each member having a simple name as
his international telex number. The sender
of a message from the Buroviseur or a
telex terminal indicates the Agora naming
structure after the telex number.

Conversion problems arise when the
content of the message sent by a Burovi-
seur contains data types that cannot be in-
terpreted by the telex terminal. The telex
UA identifies these data types (graphics,
voice, facsimile) and replaces them with
textual comment, indicating to the
destination that parts are missing.

Interconnection to public MTS. Re-
cently, CCITT adopted a model of mes-
sage handling, or MH, services the ad-
ministrations will provide to enable
subscribers to exchange messages on a
store-and-forward basis.

Two MH services are offered. The inter-
personal message service supports inter-

personal communication, while the mes-
sage transfer service, or MTS, supports
transfer of messages independently of ap-
plication. Recommendations X.400!!
define the protocols that apply between
system components.

An originator prepares and submits
messages with the assistance of an applica-
tion process called the user agent. The
MTS delivers the messages to one or more
recipient UAs. UAs interact with MTS
using the submission and delivery proce-
dures defined in the P3 protocol (recom-
mendation X.411). MTS consists of a
number of message transfer agents, or
MTAs, that operate together to accept
messages from originating UAs, relay
these messages, and deliver them to recip-
ient UAs. MTAs interact according to
protocol P1 (recommendation X.411).
The interpersonal message service pro-
vided by the UAs in cooperation uses pro-
tocol P2 (recommendation X.420). Figure
10 shows a layered representation of this
model, the various cooperating entities,
and the types of protocols that apply.

To promote this model in France, the
French PTT laboratory CNET launched a
project called Cosac to interconnect ex-
isting CBMSs according to the standard
protocols. We were asked to make Agora
compatible with these protocols. The basic
choices made include

(1) Agora should apply P1 and P2 pro-
tocols to exchange messages with MTS
and provide interpersonal message service
to end users.

(2) The naming strategy for Cosac used
country-name: Fr; administrative-do-
main-name: PTT; private-domain-
name: rva. For Agora, country-name: Fr;
administrative-domain-name: PTT; pri-
vate-domain-name: agora.

(3) In terms of functions, we selected
common functions provided by both ser-
vices. For some functions not provided by
Agora, we could only generate the cor-
responding protocol element (such as
Probe), but could not carry out the pro-
cessing upon reception. On the other
hand, some functions provided by Agora
were not authorized to pass through the
Cosac gateway. The following lists the
functions supported at both P1 and P2
levels:

(a) message transfer services, P1 level—
Basic (message identification, nondeliv-
ery notifications), Submission and Deliv-

COMPUTER

ery (delivery notification, delivery time
stamp, disclosure of other recipients,
grade of delivery selection, multidestina-
tion delivery, prevention of nondelivery
notification, submission time stamp), and
Query (Probe-generated only), and

(b) UA cooperation services, P2 level —
Basic (basic message transfer service
elements, user message identification,
typed body), Submission and Delivery
(same as message transfer service),
cooperating UA information (originator
indications, primary and secondary recip-
ient indications, importance indication,
sensitivity indication, subject indication),
and Query (Probe-generated only).

The implementation has taken the form
of a dedicated gateway composed of three
modules:

®* an MPE to interface Agora com-
ponents,

® a conversion module to perform the
adaptation of functions and pro-
tocols, and

® an MTA to interface Cosac with P1
and P2 protocols.

The gateway was written in Pascal under
the UCSD system. A proprietary real-time
executive was added to deal with concur-
rent tasks. The executable code occupies
80K bytes of memory.

gora took a long time and covered

a number of interesting areas in

office systems, including distrib-
uted systems architecture, with particular
algorithms for updating distributed
databases (name servers) and solving the
consistency problems; multimedia mes-
saging; conversion between services of dif-
ferent qualities; man-machine interface
consistency to the same service across dif-
ferent types of terminals; and validation of
X.400 recommendations (P1 and P2) igl a
heterogeneous environment.

The lessons we learned during this ex-
perience have influenced most of the pro-
totypes and products currently under de-
velopment in different research centers in
France. However, many issues remain
needing solutions and many solutions
need refinement.

In distributed systems, we encountered
major problems in name management in
distributed directories and the introduc-
tion of a new set of high level protocols in
the system components. The management

May 1986

R
SARISESSNSAN

SN S
3
RN
SASSAARRANARAY
R

Figure 10. CCITT model

and Agora as aprivate
domain.

of names should satisfy two conflicting
criteria: service flexibility and directory
consistency. The service should be flexible
enough to allow the user to change his at-
tributes whenever he wishes to do so and at
the same time, keep data consistent in the
distributed databases of directories. We
proposed an algorithm to solve this prob-
lem. However, work should continue to
validate the scheme in a real international
environment, where public and private
directories will work together.

The other issue concerns the X.400 pro-
tocols (P1, P2, and P3) proposed by
CCITT. The introduction of these proto-
cols led to the addition of 80K bytes of
code to the protocols of the five other
layers of the open system architecture. We
believe that an economical solution would
be to split the functions into two parts, the
user interface and protocols management.
We would put the former into the work-
station and the latter into a dedicated
server shared by a group of workstations
located at the same site.

We have shown this concept to be feasi-
ble in the multimedia area. Few other sys-
tems have launched similar projects. !’

Two issues need solution before putting
these systems into real offices. The first
deals with ergonomics, or human interac-
tion with multimedia documents. Current
solutions for display seem acceptable, rely-
ing on menus, icons, and windows. How-
ever, interaction with voice segments
remains in its infancy. We have seen that
customization of the workstation by autho-
rizing or prohibiting voice is an important
feature, but we don’t yet know the impact
of editing voice in communal situations.

The second issue relates to the ability
of multimedia systems to be generalized,
with adequate workstation support in
the office. The present situation looks
very promising for graphics, and we all
expect a spectacular evolution there.
However, the embedding of voice in com-
mercial systems messages remains uncer-
tain. We shall simply have to wait and see
what happens. []

Acknowledgments

Many people contributed to the design
and implementation of the Agora project.
We would like to thank G. Frantz, J.M.
Grugeaux, and M. Hue for their work in
the mainframe version. We are grateful to
E. Ouze and G. Grieré, who participated
in the micro version, and to D. Petonnet
and P. Gries for their efforts in the telex
agent. J.P. Zimmerman was the major im-
plementor of P1 and P2 protocols.

Many thanks to the Kayak team, who
built the Buroviseurs, the microservers,
and the network, and who provided the
ideal environment for the Agora experi-
ment.

Finally, we would like to thank the
reviewers for their comments, and in par-
ticular, J.J. Garcia-Luna Aceves for the
advice he gave us in restructuring and
refining this article, and the help in editing
it.

References

1. N. Naffah, “Distributed Office Systems
in Practice,”” Online Conference, Lon-
don, May 1982.

65

IFIP WG6.5, ‘‘Reports of the 2nd and 3rd 9.

Meetings of the System Environment

Subgroup,’” IFIP-WG6.5 N16, N17,

1979.

. T.H. Myer and J. Vital, ‘‘Message
Technology in the Arpanet,”” NTC 77, 10.

IEEE, Dec. 1977.

. C.P. Thacker et al., ‘“Alto: A Personal

Computer,”” in D.P. Siewioreck, C.G.

Bell, and A. Newell, Computer Struc- 11.
tures: Principles and Examples, 2nd ed.,
McGraw-Hill, New York, 1981.

B. Scheurer, ‘“‘Office Workstation

Design,”’ Office Information Systems, 1.
ed. N. Naffah, St. Maximin, N. Holland,
Oct. 1981, pp. 105-116.

. A. Wegmann, ‘‘Vitrail: Window 13

Manager for an Office Information Sys-

tem,”’ Proc. 2nd Conf. Office Informa-

tion Systems, ACM, Toronto, June 1984.

N. Naffah, “Editing Multitype Docu- 14
ments,”” Office Information Systems, ed.

N. Naffah, St. Maximin, N. Holland,

Oct. 1981, pp. 125-148.

J.P. Ansart et al., ‘‘Danube Interconnec-

tion via Transpac,”’ Local Computer Net- 15
works, eds. P.C. Ravasio, G. Hopkins,

and N. Naffah, N. Holland, Florence,

Apr. 1982, pp. 279-287.

D.P. Deutsch, ‘‘Design of a Message For-
mat Standard,’”’ Proc. IFIP Int’l Symp.
Computer Message Systems, ed. R.P.
Uhlig, N. Holland, Ottawa, Apr. 1981,
pp. 199-220.

ISO draft proposal 8879/6, ‘‘Processing
and Markup Language,’’ part six, generic
document representation specifica-
tion—SGML, Jan. 15, 1985.

CCITT-X.400 recommendation, ‘‘Mes-
sage Handling Systems: System Mod-
el—Service Elements.”’

N. Naffah and B. Mazoyer, ‘‘Multimedia
Messages in the Agora System,”’ Proc. 8th
Data Communications Symp., North
Falmouth, MA, Oct. 1983, pp. 194-196.

J. Postel, ““Internet Multimedia Mail
Transfer Protocol,”” RFC 759, USC In-
formation Sciences Institute, March 1982.

J.J. Garcia-Luna Aceves and A. Poggio,
‘“Multimedia Message Content Protocols
for Computer Mail,”” Proc. IFIP 6.5
Working Conf., Nottingham, England,
May 1984, pp. 85-96.

V. Joloboff and T. Schleich, ‘‘Introduc-
tion to Interscript,”” Jan. 1985. Also
Xerox contribution to ISO, ref. ISO/
TC97/SC18/WG3-N439.

Software Quality Engineer

AT&T Information Systems Data Networks Division has an immediate
opening for a Software Quality Engineer in the Middletown, New Jersey

area. The location offers a choice of urban or suburban lifestyles. Salaries
and benefits rank among the best in the industry.

The job objective is to improve the quality and productivity in the software
development organizations within the Division. This involves development
of software quality improvement programs, training and consultation in
software engineering methodologies and tools, and assisting developers in
identifying and solving software quality problems. This position offers high
visibility and an opportunity to be part of a team in implementing a
division-wide Total Quality Improvement Program.

A Master or Ph.D. degree in Computer Science with several years of soft-
ware development or quality management experience is required. In-depth
knowledge of software engineering methodologies is also needed. Famili-
arity with the UNIX* environment and the C language is a plus. The
candidate needs good leadership skills as well as good verbal and written
communication skills.

Send detailed resume to: B.E. Rimmer, AT&T Information Systems, Room
4M-232, Crawfords Corner Road, Holmdel, NJ 07733

An equal opportunity employer

== ATl
The right choice.

!

demark of AT&T - Bell Laboratories.

16. ISO-TC97-SC18-WGB8-N36, ‘‘Relation-
ship of ODA, ODIF, and SGML,”’ Ch.
Goldfarb et al., Oct. 1984.

17. H. Forsdick and R. Thomas, “‘Initial Ex-
perience with Multimedia Documents in
Diamond,’’ Proc. IFIP 6.5 Working
Conf., Nottingham, England, May 1984,
pp. 97- 111.

Najah Naffah is head of the advanced studies
department in office systems at Bull Transac,
where he manages a group of researchers in
various areas, such as workstation design,
document production, database management
systems, and artificial intelligence-based ap-
plications. Prior to this, he was leader of the
Kayak project at INRIA-Rocquencourt in
France and researcher for Cyclades, a data-
gram-based computer network.

Naffah received two degrees in engineering
from ESIB in Beirut and ENST in Paris. He
also holds a PhD in computer science from the
University of Paris.

Naffah serves as an associate editor for
Trans. on Office Information Systems.

Ahmed Karmouch received the MS and PhD
degrees in computer science from the Paul
Sahatier University of Toulouse, France, in
1979.

He started in distributed databases in the
Sirius project at INRIA (Institut National de la
Recherche en Informatique et Automatique).
In 1980 he joined the Kayak project at INRIA,
responsible for the message system group. In
1984, Karmouch joined Bull Transac, where he
is responsible for the department of advanced
studies of the multimedia documents manage-
ment project.

Readers may write to the authors at Bull

Transac, 1 Rue Ampere, BP 92 91301 Massy,
France.

COMPUTER

